Different subcellular localization and phosphoinositides binding of insulin receptor substrate protein pleckstrin homology domains.

نویسندگان

  • G Razzini
  • A Ingrosso
  • A Brancaccio
  • S Sciacchitano
  • D L Esposito
  • M Falasca
چکیده

Insulin evokes diverse biological effects through receptor-mediated tyrosine phosphorylation of the insulin receptor substrate (IRS) proteins. Here, we show that, in vitro, the IRS-1, -2 and -3 pleckstrin homology (PH) domains bind with different specificities to the 3-phosphorylated phosphoinositides. In fact, the IRS-1 PH domain binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdIns-3,4,5-P3), the IRS-2 PH domain to phosphatidylinositol 3,4-bisphosphate (PtdIns-3,4-P2), and the IRS-3 PH domain to phosphatidylinositol 3-phosphate. When expressed in NIH-IR fibroblasts and L6 myocytes, the IRS-1 and -2 PH domains tagged with green fluorescent protein (GFP) are localized exclusively in the cytoplasm. Stimulation with insulin causes a translocation of the GFP-IRS-1 and -2 PH domains to the plasma membrane within 3-5 min. This translocation is blocked by the phosphatidylinositol 3-kinase (PI 3-K) inhibitors, wortmannin and LY294002, suggesting that this event is PI 3-K dependent. Interestingly, platelet-derived growth factor (PDGF) did not induce translocation of the IRS-1 and -2 PH domains to the plasma membrane, indicating the existence of specificity for insulin. In contrast, the GFP-IRS-3 PH domain is constitutively localized to the plasma membrane. These results reveal a differential regulation of the IRS PH domains and a novel positive feedback loop in which PI 3-K functions as both an upstream regulator and a downstream effector of IRS-1 and -2 signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pleckstrin homology domains: not just for phosphoinositides.

PH domains (pleckstrin homology domains) are the 11th most common domain in the human genome and are best known for their ability to target cellular membranes by binding specifically to phosphoinositides. Recent studies in yeast have shown that, in fact, this is a property of only a small fraction of the known PH domains. Most PH domains are not capable of independent membrane targeting, and th...

متن کامل

Increased intracellular Ca2+ concentrations prevent membrane localization of PH domains through the formation of Ca2+-phosphoinositides

Insulin resistance, a key etiological factor in metabolic syndrome, is closely linked to ectopic lipid accumulation and increased intracellular Ca2+ concentrations in muscle and liver. However, the mechanism by which dysregulated intracellular Ca2+ homeostasis causes insulin resistance remains elusive. Here, we show that increased intracellular Ca2+ acts as a negative regulator of insulin signa...

متن کامل

Localization of myosin 1b to actin protrusions requires phosphoinositide binding.

Myosin 1b (Myo1b), a class I myosin, is a widely expressed, single-headed, actin-associated molecular motor. Transient kinetic and single-molecule studies indicate that it is kinetically slow and responds to tension. Localization and subcellular fractionation studies indicate that Myo1b associates with the plasma membrane and certain subcellular organelles such as endosomes and lysosomes. Wheth...

متن کامل

Signaling and subcellular targeting by membrane-binding domains.

Protein kinase C homology-1 and -2, FYVE, and pleckstrin homology domains are ubiquitous in eukaryotic signal transduction and membrane-trafficking proteins. These domains regulate subcellular localization and protein function by binding to lipid ligands embedded in cell membranes. Structural and biochemical analysis of these domains has shown that their molecular mechanisms of membrane binding...

متن کامل

Regulation of Tiam1 nucleotide exchange activity by pleckstrin domain binding ligands.

Rho family GTPases play roles in cytoskeletal organization and cellular transformation. Tiam1 is a member of the Dbl family of guanine nucleotide exchange factors that activate Rho family GTPases. These exchange factors have in common a catalytic Dbl homology and adjacent pleckstrin homology domain. Previous structural studies suggest that the pleckstrin domain, a putative phosphoinositide-bind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular endocrinology

دوره 14 6  شماره 

صفحات  -

تاریخ انتشار 2000